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Purpose: It is commonly stated that supraspinatus initiates abduction; however, there is no direct evi-
dence to support this claim. Therefore, the aims of the present study were to determine whether supra-
spinatus initiates shoulder abduction by activating prior to movement and significantly earlier than other
shoulder muscles and to determine if load or plane of movement influenced the recruitment timing of
supraspinatus.
Methods: Electromyographic recordings were taken from seven shoulder muscles of fourteen volunteers
during shoulder abduction in the coronal and scapular planes and a plane 30� anterior to the scapular
plane, at 25%, 50% and 75% of maximum load. Initial activation timing of a muscle was determined as
the time at which the average activation (over a 25 ms moving window) was greater than three standard
deviations above baseline measures.
Results: All muscles tested were activated prior to movement onset. Subscapularis was activated signif-
icantly later than supraspinatus, infraspinatus, deltoid and upper trapezius, while supraspinatus, infraspi-
natus, upper trapezius, lower trapezius, serratus anterior and deltoid all had similar initial activation
times. The effects of load or plane of movement were not significant.
Conclusions: Supraspinatus is recruited prior to movement of the humerus into abduction but not earlier
than many other shoulder muscles, including infraspinatus, deltoid and axioscapular muscles. The com-
mon statement that supraspinatus initiates abduction is therefore, misleading.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction quired to indicate that supraspinatus is activated prior to the acti-
Despite evidence from both ‘in vivo’ (Howell et al., 1986;
McCully et al., 2007; Van Linge and Mulder, 1963) and ‘in vitro’
(Thompson et al., 1996) studies dating back to 1963, that paraly-
sing supraspinatus does not impede the ability to abduct the shoul-
der, it is still universally reported in anatomy textbooks that
supraspinatus initiates shoulder abduction (Moore and Dalley,
2006; Palastanga et al., 2008; Standring, 2008). Numerous studies
confirm that supraspinatus is active during the full range of shoul-
der abduction (Basmajian and DeLuca, 1985; Inman et al., 1996;
Kronberg et al., 1990) however, there is no direct evidence to sup-
port the claim that supraspinatus initiates abduction.

For a muscle to act as an initiator of a movement it must acti-
vate prior to other muscles moving that joint and prior to the
movement occurring in order to generate enough tension to pro-
duce the movement, or in the case of the shoulder joint, to dynam-
ically stabilise the joint. Therefore, to investigate the claim that
supraspinatus initiates shoulder abduction, direct evidence is re-
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vation of other shoulder muscles and prior to the beginning of the
abduction movement. Only one electromyographic (EMG) study
has compared the onset of muscle activity in supraspinatus with
other shoulder muscles during shoulder abduction in asymptom-
atic participants (Wickham et al., 2010). These authors concluded
that supraspinatus initiates abduction, reporting that deltoid, mid-
dle trapezius as well as supraspinatus were activated prior to the
commencement of the abduction movement but found no signifi-
cant difference in onset of activity between supraspinatus and se-
ven other shoulder muscles examined: middle, anterior and
posterior deltoid, middle and upper trapezius, serratus anterior
and rhomboid major (Wickham et al., 2010). Wickham et al.
(2010) determined the initiation of muscle activation by the sub-
jective method of visual inspection of the data signals to identify
the first detectable point where the EMG signal rose above the
baseline. An objective and more reliable method of determining
muscle activation onset time is by the use of an algorithm
(Di Fabio, 1987; Hodges and Bui, 1996), which has been utilised
by other researchers investigating onset of muscle activity in the
back (Hodges and Richardson, 1996), around the knee (Bennell
et al., 2010) and at the shoulder (Barden et al., 2005; Brindle
et al., 2007; Santos et al., 2007). It remains to be determined if sig-
nificant differences would be revealed in the timing of supraspina-
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tus activation – compared to the activation of other shoulder mus-
cles and the commencement of movement into shoulder abduction
– if this more objective criterion for determining the onset of mus-
cle activity was applied.

The aim of the current experiment, therefore, was to determine,
using an objective measure of the initial muscle activation timing,
if supraspinatus initiates shoulder abduction based on whether it is
activated prior to the activation of other shoulder muscles and
prior to movement of the upper limb during abduction. Secondary
aims were to determine if load or plane of movement affected
supraspinatus initial activation timing.
2. Methods

2.1. Participants

The dominant shoulder (13 right and one left) of fourteen
asymptomatic volunteers (five female and nine male), aged be-
tween 18 and 49 years (mean 22.5 years) was tested in this study.
All volunteers were involved in recreational sporting activities, had
no history of shoulder pain in the previous 2 years and had never
sought treatment for shoulder pain. In addition, they were required
to demonstrate normal range of shoulder movement (0–180�),
with normal scapulohumeral rhythm, assessed visually by an
experienced physiotherapist, and be pain-free during maximal iso-
metric shoulder rotation tests. Informed consent was obtained and
the study was approved by the University of Sydney Human Re-
search Ethics Committee.
Fig. 1. Experimental setup.
2.2. Instrumentation

Activity was recorded from seven muscle sites around the dom-
inant shoulder using a combination of surface and fine wire intra-
muscular electrodes (Fig. 1). Paired silver/silver chloride surface
electrodes (Red Dot, 2258, 3 M) were placed at a distance 2 cm
apart over upper trapezius and middle deltoid. Studies indicate
that the use of surface electrodes to record activity from these
large, superficial muscles is valid i.e. unlikely to be affected by
crosstalk from surrounding or underlying muscles (Giroux and
Lamontagne, 1990; Oberg et al., 1992). Bipolar intramuscular elec-
trodes were used to record activity in deep muscles inaccessible to
surface electrode recordings (supraspinatus, subscapularis), in ser-
ratus anterior which may shift position in relation to the skin dur-
ing shoulder abduction, and in the thin lower trapezius where
surface electrodes may pick up underlying muscle activity. In addi-
tion, an indwelling electrode was used to record activity from
infraspinatus where the use of surface electrodes has been shown
to result in significant crosstalk from surrounding muscles in some
shoulder movements (Johnson et al., 2011). The intramuscular
electrodes were prepared in accordance with Basmajian and DeLu-
ca (1985) and placement followed the recommendations of Geirin-
ger (1994) for all but the subscapularis which was inserted
according to Kadaba et al. (1992). A digital ultrasonic diagnostic
imaging system (Mindray, DP-9900) was used to accurately place
the electrodes into lower trapezius. All indwelling electrode place-
ments were confirmed by visual inspection of EMG signals during
the performance of standardised submaximal tests expected to
produce high activity in the target muscle and compared with tests
expected to generate low activity or to activate surrounding mus-
cles into which the electrode may have been incorrectly placed
(Boettcher et al., 2008). A large surface ground electrode (Universal
Electrosurgical Pad, 9160F, 3M) was placed over the spine and
acromion of the scapula on the shoulder not being tested. The
EMG signals were amplified and filtered (Iso-DAM 8 amplifiers,
World Precision Instruments, gain = 100, bandpass filtered be-
tween 10 Hz and 1 kHz) before transferring to a personal computer
with a 16 bit analogue to digital converter (1401, Cambridge Elec-
tronics Design) at a sampling rate of 2564 Hz using Spike2 soft-
ware (version 4.00, Cambridge Electronics Design).
2.3. Experimental protocol

Abduction testing was performed in the coronal, scapular (30�
anterior to the coronal plane of the body), and the scapular +30�
(30� anterior to the scapular plane of the body) planes using visual
cues to guide the plane of the movement. Participants stood up-
right with feet shoulder width apart and the opposite hand resting
on the adjacent hip to limit compensatory trunk movements
(Fig. 1). Prior to testing, they were trained to abduct the dominant
arm from the anatomical position, with the thumb pointing out-
ward in the line of the movement and leading the arm through full
range of movement over a 3 s period. The maximum abduction
load able to be lifted in one repetition using normal scapulohu-
meral rhythm was determined as maximum load.

During testing, the participants performed full range abduction,
as previously practiced, with the dominant shoulder in each of the
three planes while holding a dumbbell corresponding to 25%, 50%
or 75% of maximum abduction load, for a total of nine repetitions.
All conditions were randomised to minimise effects of fatigue. The
beginning of movement was determined from a draw wire sensor
(Micro-Epsilon, WPS-1000-MK46-P10, Germany), attached to a
cuff on the wrist of the arm being tested. An experienced observer
monitored exercise performance to ensure that correct scapulohu-
meral rhythm without compensatory trunk movement and correct
timing of movement was maintained throughout range.



Fig. 2. A sample of the high pass filtered/rectified EMG signals overlaid with high
pass/rectified/low pass filtered signals from the seven muscles examined and draw
wire signal during 75% max trial from a typical subject showing the start of
movement (solid line at time = 0 s) and the initiation of the activation of each
muscle (dotted lines).
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2.4. Data analysis

The EMG signals were high pass filtered (10 Hz, zero lag 8th or-
der Butterworth), rectified and low pass filtered (50 Hz, zero lag
8th order Butterworth) using Matlab 7.1 (The Mathworks). Two
out of 252 signals (<1%) were eliminated due to electrode failure:
in one shoulder in subscapularis and in another shoulder in serra-
tus anterior. A baseline EMG level for each muscle in each trial was
determined from a 500 ms segment before the abduction move-
ment began, with the participant resting in the anatomical position
and holding the specified weight for the trial. Initial activation tim-
ing of a muscle was determined by an algorithm (Matlab 7.1) as the
midpoint of the first 25 ms moving window in which the average
muscle activity was greater than three standard deviations above
this baseline measure (Hodges and Bui, 1996). Taking into account
both negative and positive influences of different parameters, Hod-
ges and Bui (1996) identified that low pass filtering the EMG signal
at 50 Hz using a moving window of 25 ms which the mean must
exceed a threshold of three standard deviations above baseline
accurately represents the time of the onset of EMG activity. Addi-
tionally, using these parameters, this method of evaluating the on-
set of activation timing has been shown to be highly repeatable
with an intraclass correlation of 0.91 (95%CL 0.67–0.98) (Cowan
et al., 2000). The start of movement for each trial was determined
from the velocity of the draw wire sensor trace as the first point at
which the slope of the velocity first deviated from zero. The initial
activation timing was then calculated as the time from the start of
movement to the initial muscle activation, with negative values
indicating activation prior to the start of movement. Group mean
(±95% confidence intervals) initial activation timing was calculated
for each muscle at each load.

A three factor repeated measures ANOVA was performed to
compare the average initial activation times across the seven mus-
cles, three planes and three loads (Statistica, version 7.1, Statsoft).
Statistical significance was set at p < 0.05. Tukey post hoc test was
used to identify specific differences when significant ANOVA re-
sults were obtained.
supraspinatus

infraspinatus

subscapularis*

upper trapezius

lower trapezius

serratus anterior
3. Results

A sample of the high pass filtered and rectified EMG signals
overlaid with the low pass filtered signals from the seven muscles
tested and the draw wire signal of a typical subject through the full
range of shoulder abduction performed in the scapular plane is
shown in Fig. 2. There was a significant difference in the time of
initial activation between muscles across all loads and planes
(F6,72 = 7.15, p < 0.001). There was no significant difference how-
ever, in the effect of load (F2,24 = 1.19, p = 0.32) and plane
(F2,24 = 0.98, p = 0.39) on the time of initial muscle activation. There
were also no interactions between muscles, planes or loads
(p > 0.18). Tukey post hoc testing revealed that subscapularis was
activated significantly later than supraspinatus, infraspinatus, mid-
dle deltoid and upper trapezius (p < 0.05) by an average of
0.08 ± 0.01 s, but no other differences in onset of muscle activation
were found. All muscles tested were activated prior to movement
onset. The average onset of muscle activity in the seven muscles
examined, across the three planes and three loads, in relation to
the onset of the shoulder abduction movement are shown in Fig. 3.
-0.3 -0.2 -0.1 0 0.1

Time (s)

Fig. 3. Average initial muscle activation times (±95% confidence intervals) of the
seven muscles during shoulder abduction across all planes and loads. Onset of
movement occurred at 0 s indicated by the vertical line. � Significantly later initial
onset of subscapularis compared to supraspinatus, infraspinatus, upper trapezius
and deltoid.
4. Discussion

This is the first study to apply a highly repeatable, objective
method to determine the onset of muscle activity during shoulder
abduction. The results clearly show that supraspinatus does not
activate alone during the initiation of abduction. All seven shoulder
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muscles investigated in this study activated prior to the onset of
movement of the humerus during abduction in the coronal, scapu-
lar and scapular +30� planes, with no significant differences in the
onset of activity between supraspinatus, infraspinatus, middle del-
toid, upper trapezius, lower trapezius and serratus anterior. This
pattern was not affected by plane or load and demonstrates
unequivocally that many shoulder muscles are contracting simul-
taneously at the initiation of shoulder abduction, reflecting the
complex pattern of co-ordinated muscle activity required to pro-
duce shoulder movement. Based on the definition that an initiator
of a movement is a muscle that activates prior to other muscles
and prior to movement, it is therefore misleading to refer to supra-
spinatus as ‘the initiator of abduction’.

An EMG study of shoulder flexion, investigating twelve shoul-
der muscles, including the seven muscles investigated in the cur-
rent study, found that only supraspinatus, infraspinatus and
anterior deltoid were activated at the same time prior to move-
ment (Wattanaprakornkul et al., 2011). Considering that this study
used similar methodology to the current study, in the choice of
electrodes, standardisation of electrode placement, low, medium
and high load dynamic exercises and an automated method of
determining initial activation timing, the results suggest that
supraspinatus is likely to be more vital in the initiation of shoulder
flexion than abduction.

The similar initial activation timing of supraspinatus and mid-
dle deltoid prior to movement in this current study could indicate
that supraspinatus is being recruited to produce shoulder abduc-
tion torque. Force studies showing that supraspinatus has a favour-
able moment arm to produce abduction torque would support this
interpretation for the functional role of supraspinatus during the
initial stages of shoulder abduction (Ackland et al., 2008; Otis
et al., 1994; Poppen and Walker, 1978). However, its similar initial
activation time as infraspinatus could also suggest that it may have
a functional role as part of the rotator cuff to stabilise the glenohu-
meral joint during abduction and to therefore, increase the effi-
ciency of the deltoid in producing abduction torque. Force
studies indicate that during abduction the rotator cuff activates
in response to the concurrent contraction of the deltoid, providing
stability, by opposing the superior translatory forces produced by
deltoid on the humerus (Sharkey and Marder, 1995). Infraspinatus
achieves this by providing a medial and inferior force on the hum-
eral head (Inman et al., 1996; Poppen and Walker, 1978; Sharkey
and Marder, 1995), while supraspinatus exerts a medial compres-
sive force (Poppen and Walker, 1978) keeping the humeral head in
the centre of the glenoid fossa. The other rotator cuff muscle exam-
ined, subscapularis, although considered to have a similar role as
infraspinatus during abduction (Inman et al., 1996; Sharkey and
Marder, 1995) was shown to have an initial activation later than
supraspinatus and infraspinatus. One explanation for this may be
that the rotator cuff muscles that perform shoulder external rota-
tion (supraspinatus and infraspinatus) were recruited earlier than
subscapularis (a shoulder internal rotator) because the abduction
manoeuvres examined in this study were performed with the
thumb pointing outward from the anatomical position, causing
the shoulder to be in a position of relative external rotation.

Supraspinatus also activated at the same time prior to move-
ment as all axioscapular muscles tested (upper trapezius, lower
trapezius and serratus anterior). The activity of these muscles
may be contributing to scapular upward rotation. However, as
scapular movement below 30� abduction has been shown to be
variable and small in range (Inman et al., 1996; Poppen and Walk-
er, 1976) it is more likely that these muscles are being recruited to
stabilize the scapula. The rotator cuff and middle deltoid muscles,
pulling from their scapular attachments during the initiation of
abduction, require the scapula to be appropriately positioned in or-
der to perform their essential mover and/or stabiliser roles at the
glenohumeral joint. If the axioscapular muscles fail to contract
then these scapulohumeral muscles could potentially move the
scapula rather than providing optimal glenohumeral joint stability
and movement torque (Reinold et al., 2009).

In conclusion, the present study clearly indicates that supraspi-
natus, middle deltoid, infraspinatus, upper trapezius, lower trape-
zius and serratus anterior activate at the same time prior to
movement into abduction in the coronal, scapular and scapular
+30� planes and at varying loads. The results of this study support
the prescription of exercises in the initial stages of abduction as an
exercise to target many shoulder muscles including supraspinatus.
Additionally, the normative data base that has been established in
this study will provide means of comparison for pathological stud-
ies to identify potential anomalies in initial timing of muscle acti-
vation that may be present in shoulder pathology. Anatomy
textbooks need to reflect the fact that shoulder abduction is not
initiated by supraspinatus alone but by a group of shoulder mus-
cles in a complex, co-ordinated manner.
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